Cross Domain Knowledge Transfer for Person Re-identification
نویسندگان
چکیده
Person Re-Identification (re-id) is a challenging task in computer vision, especially when there are limited training data from multiple camera views. In this paper, we propose a deep learning based person re-identification method by transferring knowledge of mid-level attribute features and high-level classification features. Building on the idea that identity classification, attribute recognition and reidentification share the same mid-level semantic representations, they can be trained sequentially by fine-tuning one based on another. In our framework, we train identity classification and attribute recognition tasks from deep Convolutional Neural Network (dCNN) to learn person information. The information can be transferred to the person re-id task and improves its accuracy by a large margin. Furthermore, a Long Short Term Memory(LSTM) based Recurrent Neural Network (RNN) component is extended by a spacial gate. This component is used in the re-id model to pay attention to certain spacial parts in each recurrent unit. Experimental results show that our method achieves 78.3% of rank-1 recognition accuracy on the CUHK03 benchmark.
منابع مشابه
Unsupervised Cross-dataset Person Re-identification by Transfer Learning of Spatial-Temporal Patterns
Most of the proposed person re-identification algorithms conduct supervised training and testing on single labeled datasets with small size, so directly deploying these trained models to a large-scale real-world camera network may lead to poor performance due to underfitting. It is challenging to incrementally optimize the models by using the abundant unlabeled data collected from the target do...
متن کاملJoint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning.
A number of vision problems such as zero-shot learning and person re-identification can be considered as cross-class transfer learning problems. As mid-level semantic properties shared cross different object classes, attributes have been studied extensively for knowledge-transfer across classes. Most previous attribute learning methods focus only on human-defined/nameable semantic attributes, w...
متن کاملLearning Appearance Transfer for Person Re-identification
In this chapter we review methods that model the transfer a person’s appearance undergoes when passing between two cameras with non-overlapping fields of view. Whereas many recent studies deal with re-identifying a person at any new location and search for universal signatures and metrics, here we focus on solutions for the natural setup of surveillance systems in which the cameras are specific...
متن کاملUnderstanding Dimensioning of Knowledge Transfer Perspectives
Most current conceptualisation of knowledge transfer emerges from the premise of occidental heritage. This paper examines the dialectical procedure, underpinning the unification of knowledge as an entity, and discusses dimensions of knowledge and knowledge transfer from the practitioner’s perspective. The study asks why, if knowledge is vital for business success and competitive advantage, the ...
متن کاملPerson Transfer GAN to Bridge Domain Gap for Person Re-Identification
Although the performance of person Re-Identification (ReID) has been significantly boosted, many challenging issues in real scenarios have not been fully investigated, e.g., the complex scenes and lighting variations, viewpoint and pose changes, and the large number of identities in a camera network. To facilitate the research towards conquering those issues, this paper contributes a new datase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.06026 شماره
صفحات -
تاریخ انتشار 2016